smart_alarm/smart_alarm.cpp
2025-09-12 19:00:03 +02:00

285 lines
8.0 KiB
C++

#include "hardware/clocks.h"
#include "hardware/rtc.h"
#include "hardware/spi.h"
#include "hardware/timer.h"
#include "lwip/apps/sntp.h"
#include "lwip/err.h"
#include "lwip/ip_addr.h"
#include "nlohmann/json.hpp"
#include "pico/cyw43_arch.h"
#include "pico/stdlib.h"
#include "pico/util/datetime.h"
#include "wifi_conf.h"
#include <lwip/arch.h>
#include <pico/stdio.h>
#include "lwip/dns.h"
#include "lwip/tcp.h"
#include "net_utils.h"
using nlohmann::json;
// SPI Defines
// We are going to use SPI 0, and allocate it to the following GPIO pins
// Pins can be changed, see the GPIO function select table in the datasheet for
// information on GPIO assignments
#define SPI_PORT spi0
#define PIN_MISO 16
#define PIN_CS 17
#define PIN_SCK 18
#define PIN_MOSI 19
// constexpr char* timezone_api_host = "worldtimeapi.org";
// constexpr char* timezone_request = "GET /api/ip HTTP/1.1\r\nHost:
// worldtimeapi.org\r\nUser-Agent: smart_clock/0.1.0\r\nAccept: */*\r\n\r\n";
constexpr char *timezone_api_host = "example.org";
constexpr char *timezone_request =
"GET / HTTP/1.1\r\nHost: example.org\r\nUser-Agent: curl/8.15.0\r\nAccept: "
"*/*\r\n\r\n";
static volatile bool request_complete = false;
static volatile bool request_error = false;
ip_addr_t timezone_server_ip;
static char buffer[1024];
static err_t connected_callback(void *arg, struct tcp_pcb *tpcb, err_t err) {
if (err == ERR_OK) {
printf("Connected to server successfully!\n");
} else {
printf("Connection failed with error: %d\n", err);
}
return ERR_OK;
}
err_t set_timezone_offset(void *arg, struct altcp_pcb *conn, struct pbuf *p,
err_t err) {
printf("\ncontent err %d\n", err);
if (err != ERR_OK || p == NULL) {
return err;
}
u16_t offset = 0;
while (offset < p->tot_len) {
char c = (char)pbuf_get_at(p, offset++);
putchar(c);
}
pbuf_free(p); // Important: Free the pbuf
return ERR_OK;
}
err_t timezone_recv(void *arg, struct tcp_pcb *tpcb, struct pbuf *p,
err_t err) {
extern volatile bool request_complete, request_error;
u16_t *offset = static_cast<u16_t *>(arg);
if (p == NULL) {
printf("Connection closed by remote host\n");
request_complete = true;
return ERR_OK;
}
if (err == ERR_OK) {
printf("Received %u bytes: ", p->tot_len);
pbuf_copy_partial(p, buffer, p->tot_len, 0);
buffer[p->tot_len] = '\0';
try {
json response = json::parse(buffer);
*offset =
response["raw_offset"].get<int>() + response["dst_offset"].get<int>();
request_complete = true;
} catch (const std::exception &e) {
printf("JSON parse error: %s\n", e.what());
request_error = true;
}
tcp_recved(tpcb, p->tot_len);
} else {
request_error = true;
}
pbuf_free(p);
return ERR_OK;
}
void timezone_err(void *arg, const err_t err) {
extern volatile bool request_error;
printf("timezone_err: %d:%s\n", err, lwip_strerr(err));
request_error = true;
}
std::tuple<u16_t, err_t> get_timezone_offset() {
printf("getting timezone offset\n");
tcp_pcb *pcb = tcp_new();
tcp_recv(pcb, timezone_recv);
tcp_err(pcb, timezone_err);
static u16_t offset = 0;
// Reset flags for new request
request_complete = false;
request_error = false;
offset = 0;
tcp_arg(pcb, &offset);
if (tcp_connect(pcb, &timezone_server_ip, 80, connected_callback) == ERR_OK) {
tcp_write(pcb, timezone_request, strlen(timezone_request),
TCP_WRITE_FLAG_COPY);
tcp_output(pcb);
// Wait until request completes or errors out
uint32_t timeout_ms = 10000; // 10 second timeout
uint32_t elapsed_ms = 0;
const uint32_t poll_interval = 100; // Check every 100ms
while (!request_complete && !request_error && elapsed_ms < timeout_ms) {
sleep_ms(poll_interval);
elapsed_ms += poll_interval;
}
tcp_close(pcb);
if (request_error) {
printf("Request failed due to error\n");
return {0, ERR_ABRT};
} else if (elapsed_ms >= timeout_ms) {
printf("Request timed out\n");
return {0, ERR_TIMEOUT};
}
} else {
printf("Failed to connect\n");
tcp_close(pcb);
return {0, ERR_ABRT};
}
return {offset, ERR_OK};
}
extern "C" void sync_system_time(unsigned int sec, unsigned int usec) {
printf("SNTP callback received: %lu\n", (unsigned long)sec);
time_t unix_time = (time_t)sec;
u16_t timezone_offset_sec = []() -> u16_t {
while (true) {
printf("calling get_timezone_offset() now\n");
auto [offset, err] = get_timezone_offset();
if (err == ERR_OK) {
return offset;
}
printf("failed to get timezone offset, retrying\n");
}
}();
printf("got timezone\n");
// Apply timezone offset for local time
unix_time += timezone_offset_sec;
struct tm *time_info = gmtime(&unix_time);
if (time_info == NULL) {
printf("SNTP: Invalid timestamp %lu\n", (unsigned long)sec);
return;
}
datetime_t dt = {.year = static_cast<int16_t>(time_info->tm_year + 1900),
.month = static_cast<int8_t>(time_info->tm_mon + 1),
.day = static_cast<int8_t>(time_info->tm_mday),
.dotw = static_cast<int8_t>(time_info->tm_wday),
.hour = static_cast<int8_t>(time_info->tm_hour),
.min = static_cast<int8_t>(time_info->tm_min),
.sec = static_cast<int8_t>(time_info->tm_sec)};
// Sanity checks
if (dt.year < 2020 || dt.year > 2100 || dt.month < 1 || dt.month > 12 ||
dt.day < 1 || dt.day > 31 || dt.hour > 23 || dt.min > 59 || dt.sec > 59) {
printf("SNTP: Invalid date/time components\n");
return;
}
// Set RTC
if (rtc_set_datetime(&dt)) {
printf("SNTP: Time set to %04d-%02d-%02d %02d:%02d:%02d %s\n", dt.year,
dt.month, dt.day, dt.hour, dt.min, dt.sec,
(timezone_offset_sec == 0) ? "UTC" : "Local");
} else {
printf("SNTP: Failed to set RTC\n");
}
}
int main() {
stdio_init_all();
if (cyw43_arch_init()) {
return 1;
}
rtc_init();
// sign of life
cyw43_arch_gpio_put(CYW43_WL_GPIO_LED_PIN, true);
// SPI initialisation. This example will use SPI at 1MHz.
spi_init(SPI_PORT, 1000 * 1000);
gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);
gpio_set_function(PIN_CS, GPIO_FUNC_SIO);
gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
// Chip select is active-low, so we'll initialise it to a driven-high state
gpio_set_dir(PIN_CS, GPIO_OUT);
gpio_put(PIN_CS, 1);
// Timer example code - This example fires off the callback after 2000ms
// add_alarm_in_ms(2000, alarm_callback, NULL, false);
printf("connecting to wifi\n");
// connect to wifi
cyw43_arch_enable_sta_mode();
if (cyw43_arch_wifi_connect_timeout_ms(wifi_ssid, wifi_pass,
CYW43_AUTH_WPA2_AES_PSK, 30000)) {
return 1;
}
printf("IP: %s\n", ip4addr_ntoa(netif_ip_addr4(netif_default)));
printf("Mask: %s\n", ip4addr_ntoa(netif_ip_netmask4(netif_default)));
printf("Gateway: %s\n", ip4addr_ntoa(netif_ip_gw4(netif_default)));
ip_addr_t dns_server;
IP_ADDR4(&dns_server, 1, 1, 1, 1);
dns_setserver(0, &dns_server);
IP_ADDR4(&dns_server, 8, 8, 8, 8);
dns_setserver(1, &dns_server);
dns_resolve_sync(timezone_api_host, &timezone_server_ip, 5000);
printf("Initializing SNTP\n");
sntp_setoperatingmode(SNTP_OPMODE_POLL);
sntp_init();
ip_addr_t ntp_server;
if (ipaddr_aton("162.159.200.123", &ntp_server)) { // Cloudflare NTP
sntp_setserver(0, &ntp_server);
}
if (ipaddr_aton("129.6.15.28", &ntp_server)) { // NIST NTP
sntp_setserver(1, &ntp_server);
}
printf("SNTP initialized, waiting for time sync...\n");
while (true) {
// Keep the program running to allow SNTP to work
sleep_ms(1000);
// Optional: Print current time periodically to verify sync
datetime_t t;
if (rtc_get_datetime(&t)) {
printf("Current time: %04d-%02d-%02d %02d:%02d:%02d\n", t.year, t.month,
t.day, t.hour, t.min, t.sec);
} else {
printf("failed to get rtc\n");
}
}
cyw43_arch_lwip_end();
return 0;
}